Carbon Cost of the Fungal Symbiont Relative to Net Leaf P Accumulation in a Split-Root VA Mycorrhizal Symbiosis.
نویسندگان
چکیده
Translocation of (14)C-photosynthates to mycorrhizal (+ +), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. x Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to (14) CO(2) for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (+ +) versus (00) plants. In low nutrient media, roots of (0+) and (+ +) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (+ +) plants. Root systems of (+ +) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the (14)C-photosynthate to the mycorrhiza as did (0+) root systems. This indicates there is an optimal level of mycorrhizal colonization above which the plant receives no enhanced P uptake yet continues to partition photosynthates to metabolism of the mycorrhiza.
منابع مشابه
Changes in Antioxidant Enzymes Activity and Physiological Traits of Wheat Cultivars in Response to Arbuscular Mycorrhizal Symbiosis in Different Water Regimes
This study was conducted to evaluate changes in antioxidants, free proline, relative water content and determination of root colonization of four commercial wheat (Triticum aestivum L.) cultivars (Azar2, Darab2, Shiraz, and Falat) inoculated with the fungus Glomus intraradices, under four water regimes of 100, 75, 50, and 25% of field capacity in the year 2010 at the School of Agriculture, Shir...
متن کاملInfluence of arbuscular mycorrhizal fungi symbiosis with different pistachio rootstocks in salinity stress condition
This study was designed to investigate the effect of Mycorrhiza symbiosis on some orphophysiological characteristics of four different pistachio rootstocks under salinity stress. This research was conducted in a completely randomized design with factorial arrangement with three factors. The factors were included rootstocks at four levels (Badami-e Riz Zarand, Qazvini, Sarakhs, and UCB1), mycorr...
متن کاملPhosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.
Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigat...
متن کاملبررسی برخی ویژگیهای ریشه جو (Hordeum vulgare L.) تحتتأثیر همزیستی قارچ مایکوریزا در تنش خشکی
The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD) with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacit...
متن کاملProgramming good relations--development of the arbuscular mycorrhizal symbiosis.
The majority of plants live in symbiotic associations with fungi or bacteria that improve their nutrition. Critical steps in a symbiosis are mutual recognition and subsequently the establishment of an intimate association, which involves the penetration of plant tissues and, in many cases, the invasion of individual host cells by the microbial symbiont. Recent advances revealed that in the arbu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 86 2 شماره
صفحات -
تاریخ انتشار 1988